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F U N D A M E N T A L  S O L U T I O N  O F  A N E T  H E A T  

C O N D U C T I O N  E Q U A T I O N  

L. L. Rotkop UDC 536.24.02 

Computational procedures using a discrete analog of Green's function are introduced and substantiated by 

the example of a solution to a net linear steady-state equation of heat conduction. 

Using a discrete analog of Green 's  function enables us to pass to finite sums ra ther  than to a system of 

difference (algebraic) equations. In doing so for a linear problem with constant coefficients we can obtain a general 

solution for the specified geometry and the adopted net, that does not depend on the form or values of the boundary 

conditions or the value or coordinates of heat-release sources (similar solutions are partially obtained in [1 ] by 

another  method).  

As in the continuous case, a fundamental  solution obtained using a discrete analog of Green 's  function is 

a solution to the simplest problem: the distribution of the temperature field for specified unit heat releases and zero 

boundary conditions. Then  using the fundamental  solution we find solutions to more complicated problems with 

boundary conditions that are more complex (but linear) and arbitrary in form and value and, with an arbi t rary 

value and  geometry  of heat  releases that  are constant  in time (this involves l inear problems with constant 

coefficients). 

We describe computat ional  procedures first, and then we substant iate  them. Let it be necessary  to 

determine an / -d imens iona l  (l = 1, 2, 3) steady-state temperature field at the nodes of a net of a body, in which 

the process of temperature  distribution is described by an /-dimensional l inear equation of s teady-state heat 

conduction with constant  coefficients. In accordance with the general rules [2, 3 ] we replace the region of 

continuous temperature variation by a uniform net with nodes of steps h and r (an example of a two-dimensional 

net is given in Fig. 1). The  nodes of the net are numbered in the following order: k = 1, 2 . . . . .  r - s  are boundary 

nodes, i, j -- r - s + l  . . . . .  r are internal nodes. The matrix of the initial data of size s x r has rows with numbers 

corresponding to the internal nodes i, j = r - s + l  . . . .  , r and columns with numbers of all the nodes d -- 1, 2 . . . . .  r. 

The  rows of the initial data matrix are filled by the elements aid according to the rule 

aid = 

-1  
(20 

0 

for nodes adjacent to i ;  

for the remaining nodes .  
(1) 

The  matrix of the initial data consists of two submatrices: R of size s • ( r - s )  and Q of size s • s; each row has 

2l nonzero elements; the sum of the elements in each row is equal to 1 (a stochastic matrix).  Figures 1 and 2 give 

the numbering of the nodes and the filling in of the initial data matrix for our example. 

A fundamental  solution of a net linear steady-state problem of heat conduction is determined from the 

expression 

N= (E- Q)-I = ~ Qm=E+ Q+ Q2+ Q3 +... (2) 
m=O 

Since lim Qm = 0 (we will show this below), the number of terms in the sum in (2) can be limited by the value 
m ~  

m = ml such that the elements of the matrix Qml are smaller in absolute value (in fractions of unity) than the 

error adopted by us for this calculation. 
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Fig. 1. Two-dimensional net for the example: 1-12) boundary nodes, 13-21) 

internal nodes. 

Fig. 2. Submatrices and matrices of t ransi t ion probabilities. The  sign + 

corresponds to 0.25, empty cells correspond to 0. 

The  elements nq of matrix (2) (here i, j = r - s + 1  . . . . .  r correspond to the number  of an internal node) 

show the value of the increment of the steady-state temperature at node j on condition that heat of power qvl = 

212/h 2 is constantly released at node i under  zero boundary conditions (nij = nji). 

Thus,  the matr ix N of (2) is a fundamental  solution to the linear net equation of s teady-s ta te  heat 

conduction with zero boundary  conditions, and the elements nij of this matrix are a discrete analog of Green 's  

function. 

From the fundamental  solution we can determine the coefficients of influence (a discrete analog of Green 's  

formula): 

B = N R .  (3) 

Matrix (3) has the dimensions s • ( r - s )  and the elements bik of the matrix (here i = r - s +  1 . . . . .  r is an internal 

node number,  k = 1, 2 . . . . .  r - s  is a boundary node number) show the influence of the temperature of boundary 

node k on the temperature  of internal node i. 

From (2) and (3) the solution of the linear problem of s teady-s ta te  heat  conduction with boundary  

conditions of the first kind specified by the temperatures T k at boundary nodes k = 1, 2 . . . . .  r - s  and with constant 

heat releases whose value and coordinates are specified by the values of qvj (W/m3) is determined by the values 

of the s temperatures Ti at the internal nodes 

r - s  r qv] h2 
r i  = E bik Tk + E nil 2l 

k=l j=r-s+l  

(4) 

When specifying boundary  conditions of the II and III kind we must use a possible approximation of derivatives 

by finite differences, for example: 

II 

qs h 
Tk = ---2-- + Ti ; 

III 

2 ct k h 
Tk - }t + a k h Ti + }t + ct k h Tc ' (5) 
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TABLE 1. For the Solution of the Example - the Matrices N and B 

13 
14 
15 
16 
17 
18 
19 
20 
21 

13 14 15 16 17 18 19 20 21 

a b c b d e  c e f 
b g b d h d e i e 
c b a e d b f e c 
b d e g h i b d e 
d h  d h j  h d h  d 
e d b i h g e d b 
c e f b d e  a b c 
e i e d h d b g b 
f e c e d b c b a 

13 
14 
15 

x 10 -6 = N 16 
17 
18 
19 
20 
21 

1,12 2 3,4 5 6 ,7  8 9,10 11 

k n p n k l m l 
l o n q n o l s 

m l k n Pl n k l 
n q n o s o 
o r o r o r o r 
l s l o n q n o 
p n k l m l k n 
n o l s l o n q 
k l m l k n p n 

• 10-6 = B 

Note. In the matrix B columns 1 and 12, 3 and 4, 6 and 7, 9 and 10 are the same; a) 1196300, b) 392613, 

c) 124878, d) 249756, e) 106899, f) 53449, g) 1321190, h) 488512, i) 178327, j) 1499510, k) 31219, /) 26725, m) 

13362, n) 98153, o) 62439, p) 299075, q) 330300, r) 124876, s) 44582. 

where T i is the internal node adjacent to T k in a direction close to the normal to the surface (for bodies of intricate 

form the net should be fairly fine so that the choice of the node T i will not lead to a large error). The value of (5) 

should be substituted for the temperature T k of those nodes in (4) in which boundary conditions of the II and (or) 

the III kind are specified. For our example (Figs. 1 and 2) the matrices of a fundamental solution from (2) and 

(3) are given in Table 1. We find the solution after substituting values from the table into (4); for example, by 

substituting the initial data of the example from [3, pp. 229-232 ] we obtain the same results. 

We substantiate the computational procedure given above. The association of the heat conduction equation 

with a Markov process was established as early as the 19-20s [4 ]. A discrete approximation of a Markov process 

is the process of a random walk over the nodes of a net [5] (convergence is proved in [6 ]). The random walk 

method is used to solve the heat conduction problem by the Monte Carlo method [5, 7, 8 ]. When approximating 

the heat conduction equation by finite differences the net is constructed as described above. A difference analog 

that approximates the initial boundary-value problem can be constructed by various methods; widest acceptance 

has been received by the method of formal replacement of derivatives by finite differences that contain the values 

of net functions at the nodes of the net. Thus, for our example (Fig. 1) we obtain s equations (according to the 

number of internal nodes) [2, 3, 5 ]: 

1 [ q v ( x , Y )  h 2 ]  
T ( x ,  y ) = ~  T ( x + h ,  y ) + T ( x - h ,  y ) + T ( x ,  y + h ) + T ( x ,  y - h ) +  2 " 

In a random walk over the nodes of the net (Fig. 1) this equation is interpreted in the following way: T(x ,  y) goes 

over to adjacent nodes with the same probability p = 1/4 until it reaches a boundary node, where it is absorbed. 

If there is a heat source at the internal node (x, y), the value of the temperature increases [7, 8 ]. Random walks 

of this type are a Markov absorbing chain, whose solution makes it possible to determine a steady-state temperature 

field. The transition probability matrix has the form [9] 

F--S S 

(The matrices R and Q for our example are given in Fig. 2.) Here the zero submatrix corresponds to the prob- 

abilities of transition from boundary nodes to internal nodes, R corresponds to the probabilities of transition from 

internal to boundary nodes, Q corresponds to the probabilities of transition between internal nodes, E is the 

absorption by boundary nodes. 
For a Markov absorbing chain a fundamental matrix is [9 ] 
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N =  ( E -  Q)-I = ~ Qm 
m=O 

(see (2)). Since the process is absorbed at boundary nodes with probability unity, lim Q m = 0; see [9 ]. 
m . . , ,  o o  

The elements of a fundamental matrix are nij = Mi(uj), where uj is a function equal to the number of 

instants of occurrence of a process at internal node j; i.e., nij = Mi(uj) is the mathematical expectation of the number 
of visits to the node . /by a process that leaves internal node i up to its absorption. If a Markov absorbing chain 

corresponds to a steady-state temperature field, a fundamental matrix of it corresponds to a fundamental solution 

of the linear equation of steady-state heat conduction (i.e., a discrete analog of it described by a system of equations 

in finite differences); we described above the physical meaning of a fundamental solution. 

The elements bik of matrix (3) determine the probability that a process that leaves internal mode i will be 

absorbed boundary node k. When the net problem of steady-state heat conduction does not contain heat-release 

sources, knowing the influence coefficients from (3) will suffice to solve it. The elements of matrix (3) can be 

determined by a simpler method after solving a system of algebraic equations obtained from the condition [9 ] 

where 

PB* = B*, 

B*= E 0  

o 

is a matrix of size r x r. 

The issues of exactness of the obtained results, convergence, stability, etc. are solved in the same way as 

in the finite-difference method; voluminous results obtained for this method [2 ] can be also used for our solutions. 

Clear-cut computational procedures, stability and universality of solutions, use of the products of matrices 

as the basic mathematical operation, which requires time an order of magnitude less on specialized matrix 

processors than on ordinary computers, and advantageous use of the method of Green's function in classical 

problems of mathematical physics permit the hope that the above material will attract the attention of engineers 

and scientists to the development of similar methods for other problems of mathematical physics and their use in 
practical work. 

N O T A T I O N  

P, R, Q, N, B, matrices; A -1, inverse matrix of A; E, unit matrix; 0, zero matrix; T, To, Tk, Ti, temperature, 

ambient temperature, temperature at nodes k, i [K ]; x, y, coordinates of the net; h, spatial step of the net [m ]; 2, 

thermal conductivity [W/(m. K) ]; qv, qs, internal heat sources [W/m 3, W/m 2 ], aid, nij, bik, matrix elements; l, 

number of measurements (l = 1, 2, 3 for a one-, two-, and three-dimensional field, respectively); p, probability; 
M, mathematical expectation; a k, heat-transfer coefficient at node k [W/(m 2. K) ]. 
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